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ABSTRACT 
This project work expresses the difference between the structures with and without damping material.  The effect of 

damping on the performance of isotropic (steel) and orthotropic (Carbon Epoxy) structures is to be analysed by 

using Finite Element Analysis.  The values of damping factor, fundamental natural frequency and the static 

deflection for Steel Shaft, Carbon Epoxy Shaft and are to be compared with and without viscoelastic polymer 

(Rubber). 

 

A new composite damping material is to be studied, which consists of a viscoelastic matrix and high elastic modulus 

fiber inclusions. This fiber-enhanced viscoelastic-damping polymer is intended to be applied to lightweight flexible 

structures as a surface treatment for passive vibration control. A micro mechanical model is to be established and 

closed form expressions for the effective storage and loss properties of the damping material are to be derived. An 

optimal relation between design parameters, such as the length, diameter, spacing, and Young’s modulus of fibers 

and the shear modulus of viscoelastic matrix, is to be derived for achieving maximum damping performance. The 

characteristic value for the maximum value of Loss modulus is to be found out for the different values of matrix loss 

factors. 

 

KEYWORDS: Viscoelastic polymers, Static, Model, Transient Dynamic Analysis. 

     INTRODUCTION 
Composite materials are those containing more than one bonded material, each with different material properties. 

The major advantages of composite materials are that they have a high ratio of stiffness to weight and strength to 

weight. A principal advantage of composite materials lies in the ability of the designer to tailor the material 

properties to the application 

 

Viscoelastic  material  

A Viscoelastic material sometimes is called material with memory. This implies that a Viscoelastic material's 

behavior depends not only on the current loading conditions, but also on the loading history. They are characterized 

by possessing both viscous and elastic behavior. Figure 1.2 shows how various types of materials behave in the time 

domain.  

 

A purely elastic material is one in which all the energy stored in the sample during loading is returned when the load 

is removed. As a result, the stress and strain curves for elastic materials move completely in phase. For elastic 

materials, Hooke’s Law applies, where the stress is proportional to the strain, and the modulus is defined at the ratio 

of stress to strain.  
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Fig 1.2 Stress Strain relationship of Viscoelastic Material w.r.t Time 

 

LITERATURE SURVEY 
Viscoelastic damping materials add passive damping to structures by dissipating vibration strain energy and 

generate heat energy. The incorporation of damping materials in advanced composite materials offers the possibility 

of highly damped, light weight structural components that are vibration resistant. Concurring viscoelastic damping 

materials in composites has shown to be successful in greatly increasing the damping of composite structures. The 

damping performance, however, is often not as high in cocured composites as in secondarily bonded composites, 

where the damping material does not undergo the cure process. Substituting composite structures for conventional 

metallic structures has many advantages because of higher specific stiffness and specific strength of composite 

materials. The fiber enhanced viscoelastic damping polymer is intended to be applied to lightweight flexible 

structures as a surface treatment for passive vibration control. A desirable packing geometry for the composite 

material is proposed, which is expected to produce maximum shear strain in the viscoelastic damping matrix.  A 

general method for modeling material damping in dynamical systems is presented and it is primarily concerned with 

a dissipation model based on viscoelastic assumptions. Different numerical approaches for modeling and analyzing 

the behavior of structures having constrained layer damping. Two numerical studies are presented that reveal the 

accuracy limits of the different finite element modeling approaches for additive and integrally damped plate type 

structures. Now through the use of improved computational – based approaches (i.e. finite element method) along 

with the availability of reliable damping materials with accurate thermal and dynamic property characterizations, it 

is possible to incorporate damping treatments as part of the initial structural design process, thereby virtually 

eliminating sharp resonant peaks. Cylindrical shells with a constrained damping layer treatment are studied using 

three theories. Constrained layer damping in structures is a very popular method to control resonant amplitudes of 

vibration. Shells of revolution (e.g., cylindrical and conical) find wide application in the aerospace industry. An 

efficient method is described for finite element modeling of three-layer laminates containing a viscoelastic layer.  

Modal damping ratios are estimated from undamped normal mode results by means of the Modal Strain Energy 

(MSE) method. The solution for a radially simply supported shell has been obtained and the procedure for 

determining the damping effectiveness in terms of the system loss factor for all families of the modes of vibration in 

a multilayered shell with elastic and viscoelastic layers is reported. Approximately 85% of the passive damping 

treatments in actual applications are based on viscoelastic materials. The solution for the vibration and damping 

analysis of a general multilayered cylindrical shell consisting of an arbitrary number of orthotropic material elastic 

and viscoelastic layers with simply supported end conditions has been reported. 
 

DESCRIPTION OF PROBLEM  
The torque transmission capability of the propeller shaft for passenger cars, small trucks, and vans should be larger 

than 3,500 Nm and fundamental natural bending frequency of the propeller shaft should be higher than 6,500 rpm to 

avoid whirling vibration. The outer diameter of the propeller shaft should not exceed 100 mm due to space 

limitations.  The propeller shaft of transmission system is designed for following specified design requirements as 

shown in Table 4. 1. Due to space limitations the outer diameter of the shaft is restricted to 90.24 mm. The one-piece 

hollow composite drive shaft for rear wheel drive automobile should satisfy three design specifications, such as 

static torque transmission capability, torsional buckling capacity and the fundamental natural bending frequency. For 
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given specification, the damping factor for Steel, carbon Epoxy are to be calculated and compared with and without 

damping material (Rubber).  

 

Table 4. 1 Problem Specification 

Sl. No. Parameter Notation Units Value 

1. Torque T N-m 3500 

2.  Max Speed N RPM 6500 

3. Length L m 1.250 

 

Table 4. 2 Material Properties. 

 

Sl. No. 
Properties Units Steel Carbon Epoxy Rubber 

1 
Young’s 

Modulus E11 
N / m2 2.068e11 1.34 e 11 3.1027e 6 

2 
Young’s 

Modulus E22 
N / m2 2.068e 11 7 e 9 3.1027e 6 

3 Density kg / m3 7830 1600 2.466 

4 Poisson Ratio - 0.3 0.3 0.49 

5 
Shear Modulus 

G 
N / m2 - 5.8e 9 1.379e 11 

 

A new composite damping material is to be studied, which consists of a viscoelastic matrix and high elastic modulus 

fiber inclusions. This fiber-enhanced viscoelastic-damping polymer is intended to be applied to lightweight flexible 

structures as a surface treatment for passive vibration control. A micro mechanical model is to be established and 

closed form expressions for the effective storage and loss properties of the damping material are to be derived. An 

optimal relation between design parameters, such as the length, diameter, spacing, and Young’s modulus of fibers 

and the shear modulus of viscoelastic matrix, is to be derived for achieving maximum damping performance. 

 

STATIC ANALYSIS 
Static analysis calculates the effects of steady loading conditions on a structure, while ignoring inertia and damping 

effects, such as those caused by time-varying loads. A static analysis, however, includes steady inertia loads (such as 

gravity and rotational velocity), and time-varying loads that can be approximated as static equivalent loads (such as 

the static equivalent wind and seismic loads commonly defined in many building codes).  

 

Static Analysis of Steel Shaft without viscoelastic Damping Material by Beam and Shell Element 

In this part static deflection of the steel shaft is calculated and compared with ANSYS results. The specification for 

the shaft is given in the Table 5.1.  For calculating the deflection, the cantilever boundary condition is taken by 

considering its self weight. 

 

Table 5.1 Specification of steel shaft 

Sl. No. Parameters Values 

1 Outer Diameter 0.09024 m 

2 Thickness 2.1 e -3 

 

Steel Shaft without Damping Material for Shell 99 

In this case shell element is taken to calculate the deflection value for steel shaft. Here Shell element is taken due to 

specify the number of layers to include the damping polymer. Here steel shaft without damping material is 

considered and specifications are tabulated in table 5.1. 
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Fig 5. 2 Static Deflection for Steel Shaft 

 

Using ANSYS 7.0 the deflection value is calculated.  The value is 0.116*10-3 m. The deformed shape of the shaft is 

shown in the Fig 5.2. 

 

Steel Shaft with Damping Material 

In this type a damping material (i.e.) Rubber is inserted between the two layers of shaft and the deflection value is 

calculated using ANSYS. The specification of the shaft with damping material is shown in the Table 5.3 

 

Table 5. 3 Specifications for Steel Shaft with Rubber 

Sl. No. Parameters Values 

1 Outer Diameter 0.09024 m 

2 Thickness of each layer 1.05 e -3 m 

3 Number of layers 3 

4 Damping Material Rubber 

5 Element Shell 99 

 

           
Fig 5.3 Stacking Sequence for Steel Shaft with Rubber              Fig 5.4 Deflection of Steel Shaft with Rubber 

 

Using ANSYS 7.0 the deflection value is calculated.  The value is 0.912 e -4 m. The deformed shape of the shaft is 

shown in the Fig 5.4. 

 

Carbon Epoxy Shaft without Damping Material 
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In this case Carbon Epoxy shaft is modeled with 13 layers by considering the shell element. The specifications are 

shown in the Table 5.4 

 

Table 5.4 Specification for Carbon Epoxy Shaft 

Sl. No. Parameters Values 

1 Outer Diameter 0.09024 m 

2 Thickness of each layer 1.5 e -4 m 

3 Number of layers 13 

4 Element Shell 99 

 

              
Fig 5.5 Stacking Sequence for Carbon Epoxy Shaft                                 Fig 5.6 Static Deflection for Carbon 

Epoxy Shaft 

Using ANSYS 7.0 the deflection value is calculated. The value is 0.824 e -4 m. The deformed shape of the shaft is 

shown in the Fig 5.6. 

 

Carbon Epoxy Shaft with Damping Material 

In this case Carbon Epoxy shaft is modeled with damping material (Rubber) and it is incorporated in between the 

layers. The specification of the shaft is shown in the Table 5.5. 

 

Table 5.5 Specification for Carbon Epoxy Shaft with Rubber 

 Sl. No. Parameters Values 

1 Outer Diameter .09024 m 

2 Thickness of each layer 1.5 e -4 m 

3 Number of layers 14 

4 Damping Material Rubber 

5 Element Shell 99 
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Fig 5.7 Stacking Sequence for Carbon Epoxy Shaft             Fig 5.8 Static Deflection for Carbon Epoxy Shaft with 

Rubber 

 

The stacking sequence of the Carbon Epoxy shaft with damping material (Rubber) is shown in the fig 5.7. Here the 

7th layer is the rubber. Using ANSYS 7.0 the deflection value is calculated.  The value is 0.712 e -4 m. The deformed 

shape of the shaft is shown in the Fig 5.8. 

 

MODAL ANALYSIS 
Any physical system can vibrate. The frequencies at which vibration naturally occurs, and the modal shapes which 

the vibrating system assumes are properties of the system, and can be determined analytically using Modal Analysis. 

 

Modal analysis is the procedure of determining a structure's dynamic characteristics; namely, resonant frequencies, 

damping values, and the associated pattern of structural deformation called mode shapes. It also can be a starting 

point for another, more detailed, dynamic analysis, such as a transient dynamic analysis, a harmonic response 

analysis, or a spectrum analysis.  

 

Modal analysis in the ANSYS family of products is a linear analysis. Any nonlinearities, such as plasticity and 

contact (gap) elements, are ignored even if they are defined.  Modal analysis can be done through several mode 

extraction methods: subspace, Block Lanczos, Power Dynamics, Reduced, Unsymmetric and Damped. The damped 

method allows you to include damping in the structure.  

 

Modal Analysis of Steel Shaft using Beam Element without Rubber 

Consider the free-body diagram of an element of a beam shown in figure. Where M(r, t) is the bending moment, V(r, 

t) is the shear force and f (r, t) is the external force per unit length of the beam. 

 

 

 

 

 

 

 

 

 

 

Fig 6.1 Beam in Bending 

Euler -Bernoulli beam equations with external force, external moment is given by following equations. 
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Using Assumed modes approach, by solving the above equation the Eigen values and mode shapes can be 

calculated. Using the variable separable method y(r, t) may be expressed by following equations.  
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The complementary solution of the above equation is given by 
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Shear force at free end is zero, by applying this boundary condition in the above equation the above equation 

converted to following equation. 
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 From the solution of the equation the  i value can be calculate. The natural frequency of the system is given by 

substituting  i can be calculated. 
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Table 6.1 Modal Frequencies for Steel Shaft using BEAM 3 

Mode Shapes 
Theoretical Value 

( HZ) 

Analytical Value 

Using ANSYS 7.0 

(HZ) 

1 58.29 57.289 

2 359.68 355.98 

3 1007.04 983.61 

4 1972.94 1892 

5 3260 3112.1 

 

 

 
 

Fig 6.2 Modal Analysis for Steel Shaft using Beam 3                         Fig 6.3 Comparison of Results 

 

The fundamental natural frequency of Steel shaft using Beam 3 element is shown in the Fig 6.2. The value of the 

frequency is 57.289 Hz.The theoretical and FEA values are compared and shown in the Fig 6.3. 

 

Modal Analysis of Steel Shaft using Shell Element without Rubber and with Rubber 

In this case Steel shaft is modeled using Shell 99. The specifications used are same as in the Static Analysis. 

      
Fig 6.4 Modal Analysis for Steel Shaft using Shell 99                   Fig 6.5 Modal Analysis for Steel Shaft with 

Rubber 

 

http://www.ijesrt.com/


 
[Kumar*, 5(3): March, 2016]  ISSN: 2277-9655 

                                                                                                    (I2OR), Publication Impact Factor: 3.785  

http: // www.ijesrt.com                 © International Journal of Engineering Sciences & Research Technology 

 [655] 

The fundamental natural frequency of the steel shaft using Shell 99 is shown in the Fig 6.4. The value is 57.587 

Hz.The fundamental natural frequency of the Steel Shaft with Rubber is shown in the Fig 6.5. The value is 64.937 

Hz. 

 

Modal Analysis Of Carbon Epoxy Shaft Without rubber and With Rubber 

    
Fig 6.6 Modal Analysis for Carbon Epoxy Shaft                    Fig 6.7 Modal Analysis for Carbon Epoxy Shaft with 

Rubber 

 

The fundamental natural frequency of the Carbon Epoxy Shaft is shown in the Fig 6.6. The value is 67.601 Hz. The 

fundamental natural frequency of the Carbon Epoxy Shaft with is shown in the Fig 6.7. The value is 72.443 Hz 

 

TRANSIENT DYNAMIC ANALYSIS 
Transient dynamic analysis is a technique used to determine the dynamic response of a structure under a time-

varying load. The time frame for this type of analysis is such that inertia or damping effects of the structure are 

considered to be important. Cases where such effects play a major role are under step or impulse loading conditions, 

for example, where there is a sharp load change in a fraction of time. If inertia effects are negligible for the loading 

conditions being considered, a static analysis may be used instead. 

 

It should be noted that a transient analysis is more involved than a static or harmonic analysis. It requires a good 

understanding of the dynamic behavior of a structure. Therefore, a modal analysis of the structure should be initially 

performed to provide information about the structure's dynamic behavior.  

In ANSYS, transient dynamic analysis can be carried out using 3 methods.  

 The Full Method: This is the easiest method to use. All types of non-linearities are allowed. It is however 

very CPU intensive to go this route as full system matrices are used.  

 The Reduced Method: This method reduces the system matrices to only consider the Master Degrees of 

Freedom (MDOFs). Because of the reduced size of the matrices, the calculations are much quicker. 

However, this method handles only linear problems (such as our cantilever case).  

 The Mode Superposition Method: This method requires a preliminary modal analysis, as factored mode 

shapes are summed to calculate the structure's response. It is the quickest of the three methods, but it 

requires a good deal of understanding of the problem at hand.  

  

In this project the Reduced Method is used for conducting the transient analysis. Usually one need not go further 

than reviewing the Reduced Results. However, if stresses and forces are of interest than, we would have to Expand 

the Reduced Solution.  

 

Transient Dynamic Analysis of Steel Shaft without damping material by beam element and shell element 

In this part Transient Dynamic analysis of the shaft is calculated using the same specifications as given in the static 

analysis. Transient Dynamic analysis is needed because the output of this analysis is used in calculating the damping 

factor using Log Decrement method. 
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Transient Dynamic Analysis of Steel Shaft using Beam Element   

 

 
Fig 7.1 Transient Dynamic Analysis of Steel Shaft using Beam 3 

 

The Transient Dynamic Analysis of Steel Shaft using Beam 3 Element is shown in the Fig 7.1. From the above Fig 

7.1 damping factor is calculated using Log Decrement method and the value is 0. 01396 

 

Transient Dynamic Analysis of Steel Shaft using Shell Element without and with Rubber 

In this case Steel shaft is modeled using Shell 99. The specifications used are same as in the Static Analysis.  

       
Fig 7.2 Transient Analysis for Steel Shaft without rubber          Fig 7.3 Transient Analysis for Steel Shaft using 

Rubber 

 

The Transient Dynamic Analysis of Steel Shaft using Beam 3 Element is shown in the Fig 7.2. From the above Fig 

7.2 damping factor is calculated using Log  Decrement method and the value is 0. 016766.The Transient Dynamic 

Analysis of Steel Shaft using Shell 99 with Rubber is shown in the Fig 7.3. From the above Fig 7.3 damping factor 

is calculated using Log Decrement method and the value is 0. 0195. 

 

Transient Dynamic Analysis of Carbon Epoxy Shaft  without and with Rubber 
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Fig 7.4 Transient Analysis for Carbon Epoxy Shaft    Fig 7.5 Transient Analysis for Carbon Epoxy Shaft with 

Rubber 

 

The Transient Dynamic Analysis of Carbon Epoxy Shaft using Shell 99 is shown in the Fig 7.4. From the above Fig 

7.4 damping factor is calculated using Log Decrement method and the value is 0. 02657.The Transient Dynamic 

Analysis of Carbon Epoxy Shaft using Shell 99 with Rubber is shown in the Fig 7.5. From the above Fig 7.5 

damping factor is calculated using Log Decrement method and the value is 0. 029005. 

 

Optimization Of Damping Properties 

It is noted that means proposed for improving free layer treatment, and the lightweight of fibers will benefit 

applications where weight is an important consideration. Fiber aspect ratio, fiber tip spacing, fiber angle and a 

number of other parameters were varied to improve the damping performance of a structural composite material. In 

this chapter, a micro mechanical model for the fiber-enhanced viscoelastic-damping polymer is established, and 

closed form expressions for the effective complex moduli are shown. Based on this model, damping performance of 

the enhanced damping polymer is optimized by establishing an optimal relation between the design parameters, such 

as length. 

 

Viscoelastic   Damping Treatment  

Viscoelastic damping treatment performances include the following: 

1. High loss modulus viscoelastic   damping materials 

2. High extensional stiffness constraining layers 

3. A multiplicity of layers 

4. Optimal section length constraining layer segments 

 

Due to the high elastic modulus, usually twice and three times as much as that of steel and aluminum, respectively 

high elastic modulus fibrous materials, for example Kevlar or graphite fiber, are desirable candidates for constraint 

materials in viscoelastic damping treatments. By embedding fiber into a viscoelastic polymer matrix to make a 

single composite damping product, all the features cited above can be readily achieved. The optimal segment lengths 

of the fibers can be controlled in fabricating processes, and the effective number of damping layers can be increased 

to a great extent without difficulty. Furthermore, the proposed fiber enhanced viscoelastic damping polymer can be 

conveniently installed on structural surfaces as a diameter, spacing, and Young’s modulus of the fibers and shear 

modulus of the viscoelastic matrix. 

 

Effective Complex Module 

Based on the fundamental principles of constrained viscoelastic layer treatments, a packing geometry with staggered 

layers as shown in the fig. 1 is selected, as it makes efficient use of the materials. 
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In this Fig 8.1, the rods with square cross section and finite length represent fibers, which are embedded in a 

viscoelastic matrix. The square fiber cross section is used in the model for convenience. The spacing between 

neighboring fibers is assumed to be the same and the gaps between fiber ends are neglected in the present analysis.  

 

The Fig 8.2 also show a selected representative volume element whose geometrical characterist ics and stress strain 

relations are the same for any of such elements, regardless of the position in the composite material. The average 

stress and strain of the representative volume element therefore are same for any such elements and also the same as 

that of the entire composite material under a uniform loading. 

Fig 8.1                                                                                                       Fig 8.2 

Fig 8.1 Schematic representation of the fiber enhanced viscoelastic polymer under stretching 

Fig 8.2 Schematic representation of finite element model for representative volume element 

 

Displacement Field Under Axial Loading 

Fiber enhanced Viscoelastic damping materials applied to the surface of flexible structures, will experience 

periodically axial loading when the base structure vibrates. In the development of the displacement field within the 

composite under this axial loading, the following assumptions are being made: 

 a. Due to the much higher stiffness of the fibers, usually orders of magnitude higher than that of the 

viscoelastic matrix, it is assumed that the fiber sustains extensional stress only and the viscoelastic matrix transmits 

shear stress only. 

 b. Uniform normal stress field and uniform shear stress field are assumed    through the cross sections of 

the fibers and the viscoelastic matrix, respectively due to their very small dimensions. 

 c. Linear material properties are assumed for the fibers and the viscoelastic   matrix, as anticipated strains 

are small and well within the linear range. 

 d. Poisson’s ratio effects are negligible, again due to small strains. 

 e. Fibers are elastic and dissipate very little energy relative to the viscoelastic matrix. 

 

The front and backsides of the fibers are subjected to shear stresses due to existence of the viscoelastic matrix. Due 

to the symmetric configuration of the composite, the solution of the displacement field can be reduced to a two 

dimensional problem. It is well known that the complex modulus approach is an efficient method to describe the 

dynamic behavior of homogenous viscoelastic materials. 

 

Based on the above assumptions and by applying boundary conditions, the final expressions for the effective storage 

modulus
'

CE , loss modulus 
''

CE and loss factor E the properties of the fiber enhanced viscoelastic damping 

polymers under uniaxial loading are given as: 
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 Where, 

 Here,  represents the characteristic value,   E  represents the matrix loss factor, and Vf represents the 

fibre volume fraction. It can be seen that all these effective properties are functions of the packing geometry of the 

composite, and the material properties of the constituents. These properties will be employed in the analysis, which 

follows. 

 Table 8.1 Design Specifications 

Sl.No Quantity Symbol Unit Value 

1. Distance between fibers tv in 0.00021 

2. Diameter of fibers df in 0.0005 

3. Half length of fibers Lf / 2 in 0.05 

4. Normal stress   lb/in2 1.44 e 5 

5. Shear modulus of matrix Gv'
 lb/in2 130 

6. Tensile modulus of fibers Ef lb/in2 6.4 e 7 

 

Table 8.2 Calculated Values for v =0.75 

α N1 N2 D ''

CE /VfEf E  

0.2 4127.72 3379.17 121707.4 0.02776 0.81865 

0.4 315.71 216.98 2475.22 0.08766 0.68726 

0.6 81.34 43.79 323.58 0.13534 0.5384 

0.8 34.14 13.87 92.37 0.1502 0.40636 

1.0 18.43 5.51 39.65 0.13896 0.29902 

1.2 11.53 2.47 21.51 0.11478 0.2141 

1.4 7.94 1.17 13.47 0.087 0.14764 

 

Table 8.3 Calculated Values for v =1 

α N1 N2 D ''

CE /VfEf E  

0.2 2083.28 2529.94 67781.21 0.03733 1.2144 

0.4 169.24 161.88 1359.25 0.11909 0.95651 

0.6 46.29 32.59 178.6 0.1825 0.7042 

0.8 20.37 10.36 52.29 0.19808 0.50858 

1.0 11.39 4.18 23.22 0.18009 0.36703 

1.2 7.34 1.96 13.03 0.15026 0.26694 

1.4 5.18 1.03 8.44 0.12182 0.19831 
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Table 8.4 Calculated Values for v =1.25 

α N1 N2 D ''

CE /VfEf E  

0.2 1140 2019.39 42824.99 0.04715 1.77139 

0.4 102.19 128.62 843.7 0.15245 1.25867 

0.6 30.4 25.82 111.94 0.23068 0.84939 

0.8 14.19 8.24 34 0.24239 0.58083 

1.0 8.28 3.4 15.8 0.21527 0.41085 

 

OPTIMIZATION OF DAMPING PROPERTIES 
The closed form expressions of the effective material properties developed above allow optimization of the damping 

properties for the fiber enhanced viscoelastic polymers. The following discussion considers the establishment of the 

appropriate criterion for damping design optimization. 

 

Intuitively, a large value of loss factor is a desired property for damping materials. Consider the damping 

mechanism in a viscoelastic material. In order to dissipate energy, a damping material must store some energy first. 

The more energy it can store, the more energy it will dissipate. The ability to store energy is measured by the storage 

modulus of materials. It is clear that the best quantity reflecting the damping performance of a viscoelastic material 

is the loss modulus of the material, i.e., the product of the loss factor and the storage modulus.  

 

It may not always be desirable, though, to use a very high storage modulus to achieve a high loss modulus. The 

reason is that a high storage modulus of a damping material could significantly change the stiffness of the base 

structure on which it will be bonded. Therefore, a good design involves proper balance between loss factor and 

storage modulus. 

 

The proposed strategy for optimization of the fiber-enhanced viscoelastic-damping polymer is given below. 

 Examine the variation of the composite loss factor, ηE, with the characteristic value . 

 Based on the results of the step one, select a narrowed range of  to maximize the loss modulus, E"
c 

 After all the parameters are determined, evaluate the storage modulus, ηE , and loss factor, E'c . 

The design specification for the model is shown in the table 8. 1. The calculated values are shown sin table 8. 2, 

table 8. 3 and table 8. 4. 

  

 

 

 

 

 

 

 

 

 

 

 

Fig 8.3 Effect of Characteristic value  on loss modulus (
''

CE /VfEf )                Fig 8.4 Effect of Characteristic 

value  on loss factor 

 

DISCUSSIONS 
For different values of matrix loss factors, ηv , maximum value of E"

c occurs at the value of  around 0.75. It can be 

concluded that for maximum damping performance, the characteristic value of the composite, i.e.,, should be set to 

0.75. To satisfy this optimum condition, one can vary the parameters used to calculate the characteristic value  
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(i.e., Ef, Gv', tv, df and Lf). For example, if Ef, Gv', df and Lf are prescribed by a specific design, satisfaction of this 

condition will yield an optimal distance between fibers, tv. A large value for the fiber Young’s modulus Ef, is a 

desired property for the fiber enhanced viscoelastic damping polymer. 

 

CONCLUSIONS 
 The damping factor has been found out for Steel Shaft, Carbon Epoxy Shaft with and without Viscoelastic 

polymer (Rubber). 

 The Static, Modal and Transient Dynamic Analyses have been carried out using Finite Element Analysis.  

 The following observations were made by embedding the Viscoelastic polymer (Rubber) into the structure. 

 Damping factor increased by 16.3%, 9.2% for Steel, Carbon Epoxy shafts respectively. 

 The fundamental natural frequency increased by 12.76%, 7.2% for Steel, Carbon Epoxy shafts 

respectively. 

 The deflection value decreased by 21.38%, 12.71% for Steel, Carbon Epoxy Shafts respectively. 

 The increase in damping factor results in further suppression of vibrations and hence results in 

increased structural life. 

 An optimal relation between design parameters such as the length, diameter, spacing, and Young’s modulus 

of fibers and the shear modulus of viscoelastic matrix has been derived for achieving maximum damping 

performance. It has been found that for maximum damping performance, the characteristic value of the 

composite should be set to 0.75. 
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